Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Rapid restoration of access to essential goods and services has long been regarded as paramount for community recovery. Yet, there remains ambiguity in how access should be defined, measured, or operationalized. Defining accessibility as the ability to use available goods and services with a reasonable level of effort and cost requires evaluating it across six dimensions (proximity,availability,adequacy,acceptability,affordability, andawareness) while considering the perspective of both users and providers in the evaluation. But common distance-based metrics that focus solely on physical access and travel time often fall short of fully capturing these requirements, overlooking the user's perception. This paper introduces a new spatio-temporal accessibility metric that combines four out of these six dimensions, including proximity, acceptability, adequacy, and availability. The metric considers uncertainty in measuring each dimension and addresses both user and provider perspectives in measuring the acceptability and adequacy dimensions. The variation in the metric across the disaster timeline serves as a proxy for community recovery. The metric aligns with common engineering-oriented functionality-based resilience frameworks as the functionality level of the providers has been incorporated in its development. Operating at the household level, the metric determines the ratio of post-disruption access time to the intended good or service against its pre-disruption access time and yields a unitless ratio between zero and one, with zero expressing a total loss in accessibility and one signifying the same level of accessibility as pre-disruption. The proposed metric, while being scientifically principled, is a practical tool whose output is easily understood even by non-expert individuals. The metric is illustrated for schools and pharmacies using the Lumberton Testbed and data collected following the 2016 flood in Lumberton, North Carolina after Hurricane Matthew. Findings provide new insight into recovery plan prioritization and can be used to trigger protective actions. The paper concludes by discussing issues and barriers related to developing and validating accessibility metrics while highlighting areas for future research.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The utilization of mass timber engineered wood products has increased for new buildings aiming to reduce environmental impacts. Whole-building life-cycle assessment (WBLCA) has been used to quantify the environmental impacts for a building’s lifespan. While mechanisms for calculating the cradle-to-grave impacts of a single building are well established, there are few examples of WBLCA applied for buildings in their first and second life that can be used to inform perspectives and pathways related to the circular economy and lead to informed decision making. This work presents a case study WBLCA to examine the effect of overlapping system boundaries and alternative end-of-life pathways for a building structure in its first and second life. This case study analyzed a ten-story mass timber shake-table specimen that was partially deconstructed and reused as a six-story shake-table building structure. Environmental impacts were analyzed in terms of global warming potential (GWP) calculated as the sum of fossil carbon, biogenic carbon, and avoided impacts. When examining reuse and landfill pathway alternatives using current standards and practices, results show that reusing material causes a positive GWP trend in the first system boundary and negative GWP trend in the second boundary. These results could indicate that it is not advantageous to reuse the ten-story building structure, running against principles of waste hierarchy, although the interpretation should be considered with caution. Future analyses could be improved by considering additional criteria such as demand on forest stocks, economic incentives, and even social impacts for a more complete representation of sustainability.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Numerical analyses can aid design exploration, but there are several computational approaches available to consider design options. These range from “brute-force” search to optimization. However, the implementation of optimization can be challenging for the complex, time-intensive analyses required to assess seismic performance. In response to this challenge, this study tests several optimization strategies for the direct displacement-based design of a lateral force-resisting system (LFRS) using mass timber panels with U-shaped flexural plates (UFPs) and post-tensioning high-strength steel rods. The study compares two approaches: (1) a brute-force sampling of designs and data filtering to determine acceptable solutions; and (2) various automated optimization algorithms. The differential evolution algorithm was found to be the most efficient and robust approach, saving 90% of computational cost compared to bruteforce sampling while producing comparable solutions. However, every optimization formulation did not return best range of design options, often requiring reformulation or hyperparameter tuning to ensure effectiveness.more » « less
-
Every year, floods cause substantial economic losses worldwide with devastating impacts on buildings and physical infrastructures throughout communities. Techniques are available to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to their benefits from a community resilience perspective is limited in the literature. Investing in flood mitigation is critical for communities to protect the physical and socioeconomic systems that depend on them. While there are multiple mitigation options to implement at the building level, this paper focuses on determining the optimal flood mitigation strategy for buildings to minimize flood losses within a community. In this research, a mixed integer linear programming model is proposed for studying the effects and trade-offs associated with pre-event short-term and long-term mitigation strategies to minimize the expected economic losses associated with floods. The capabilities of the proposed model are illustrated for Lumberton, North Carolina (NC), a small, socially diverse inland community on the Lumber River. The mathematically optimal building-level flood mitigation plan is provided based on the available budget, which can significantly minimize the total expected direct economic loss of the community. The results reveal important correlations among investment quantity, building-level short- and long-term mitigation measures, flood depths of various locations, and buildings’ structure. Additionally, this study shows the trade-offs between short- and long-term mitigation measures based on available budget by providing decision support to building owners regarding mitigation measures for their buildings.more » « less
-
Design and cradle-to-grave life cycle assessment of a full-scale six-story shake-table test buildingThis paper describes the lateral force resisting system (LFRS) design in a full-scale six-story shake-table test building and presents a comparative cradle-to-grave life-cycle assessment of alternative LFRSs. The test building features the reuse of material from a ten-story shake-table structure comprised of engineered mass timber (MT) products. These include MT floors (cross-, glue-, nail-, and dowel-laminated timber [CLT], [GLT], [NLT], [DLT]); MT posttensioned rocking walls (CLT and mass ply panels [MPP]); and a gravity system consisting of laminated-veneer lumber (LVL) beams and columns. Shake-table testing will benchmark innovative, low-damage design solutions for the LFRSs. To supplement this test, the environmental impact of a MT LFRS is determined relative to design alternatives that use conventional materials. The Athena Impact Estimator for Buildings was used to perform a comparative, cradle-to-grave life-cycle assessment (LCA) of the prototype MT LFRS with respect to an alternative, functionally equivalent reinforced concrete (RC) shear wall design. The LCA results showed reduced environmental impacts across some impact metrics, with a significant reduction in Global Warming Potential for the MT LFRS when accounting for biogenic carbon.more » « less
An official website of the United States government
